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Phase change induced by 40 keV He' ion bombardment in
u—Fe203 and FeBOA was studied by conversion electron M&éss-
bauer spectroscopy. From the similarity of ion bombardment
effect and thermal annealing behavior, the significant role
of thermochemical process after the propagation of the
collision cascade for the final fate of the bombarded entity

was suggested.

The chemical effect induced by high energetic atoms for the solid has
been interesting from viewpoints of basic research on hot atom chemistry
and its application to modification of the physicochemical properties of
the solid or to creation of new functional material.1_4) The research on
the surface phenomena has been developed with the progress of the instru-
ments such as XPS, AES, and so on. However, the works on the reaction
occurring inside the solid have not been so much carried out compared to
the surface reaction due to the difficulty of non-destructive analysis of
the reaction products.

The authors have been studying the ion bombardment chemistry of iron
compounds by MOssbauer Spectroscopy, which is a non-destructive
technique.S) In the present study, the Conversion Electron Mdssbauer spec-
troscopy (CEMS) was applied because its detection depth is comparable to
the range of 40 keV He* ion. From the comparison of ~ the bombardment
effects studied by CEMS with thermal annealing effects, phase diagram of
Fe-0 system,é) and the energy-loss processes calculated by TRIM code,7)
the authors obtained suggestive results on the reaction induced by ener-
getic He' ions.

The materials were target grade sintered a—Fe203 and Fe304 with a
95% of theoretical density ©purchased from Furuuchi Chemicals Co.. They
were cut into 1.5 x 1.5 x 0.05 cm? and mechanically polished with 200,



1378 Chemistry Letters, 1993

30 and 5 wm-diamond disks and 1 and 0.3 pm-alumina abrasives.

Ion bombardment was carried out by 40 keV He®™ ions with a bean
current density of 100 upA cm™<. The sample was chilled by ice bath
when irradiated at room temperature and temperature rise during the bom-
bardment was less than 25 T. After the bombardment, the sample was re-
moved from the accelerator and mounted onto a gas flow conversion electron
detector. The Mdssbauer spectra were measured with about 107 Bgq of
57Co/Rh source by a constant acceleration at room temperature. The thermal
annealing experiments were done in vacuo in a quartz-made reaction vessel
at 1173, 1273, and 1373 K for 30 min.

Figure 1 shows the effects of the ion bombardment and the
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but proceeded at 773 K
for 1 h bombardment(Fig. 1C). New small doublet peaks at the center were
identified as FeO from Mossbauer parameters. From the comparison of areal
intensity, FeO content was estimated to be 67%.

6)

According to the phase diagram, the higher temperature is necessary
for reduction of Fe304 to FeO than that of a—FeQO3 to Fe304 under the

same oXygen pressure. The bombardment results in Fig. 1A and C, agree
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with the prediction from the phase diagram. The apparent agreement in
reduction behavior in the bombardment with the thermochemical treatment
and higher bombardment-reduction temperature for Fe304 than for a—Fe203
suggest the important role of thermal spike in the bombardment-induced
phase change. Thus, the temperature and the duration time of the thermal
spike formed in a-F9203 were estimated with the assumption of the cylin-
drical one along the track.

According to the model proposed by Mozumder,B) the excess temperature,
Toxs» can be expressed as a function of the distance from the center of the
track ,r, elapsed time after passage of the ion, t, and size parameter
of the track, rgy, as follows

Tox=To(1+46t/1(2) " Texpl-r2/ (rg2+46t) ]

where, Ty and 6 are the initial excess temperature at the center of the
track and the thermal diffusivity and expressed as,

To=s/(pcvr02) and § = k/pcV
where s, o, k, and c;, denote the average stopping power from the surface
to the detection depth of the conversion electron, the density, the heat
conductivity and the specific heat respectively. As the detection depth of
the conversion electron is estimated to be 100 nm, which corresponds to
about one-third of the maximum projected range of 40 keV He* ion, the s
value was found to be 220 eV nm~! by TRIM calculation. Though the
radius of the track formed in a—Fe203 by 40 keV He* ion has not been
reported, 17-1.5 nm was supposed to be most probable. Thus, by taking
p =5.24 g cm'3, cV=1.6X1O'1 cal g'1 g and k=1.44x10'2 cal s~ cm™] K'1,9)
the initial excess temperatures at the center of the track were estimated
to be 3200 K for rp=1 nm and 1400 K for rp=1.5 nm, respectively.

Figure 2 shows the excess r r;O b‘ T T
temperature at the distance of 1600k ——-ro=1.0 N
0.7, 1.0, and 1.5 nm from the B —srg=1.5

center of the track for ry=1.0 nmfﬁ12oo
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ported that the collision cascade 300
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1273-1373 K, the result in Fig. 2 (Tex=actual temp - 300)
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implies that the phase change from a—Fe203 proceeds between 10~13 and
10~12 s within the radius of about 0.7-1 nm from the center of the track.
Generally, the ion-induced reaction proceeds under non-equilibrium
conditions. The gimilarity of the ion-induced phase change to the phase
diagram obtained in the present experiment indicates that final chemical
reaction may be controlled by thermodynamic equilibrium process. Some
authors have reported the important role of the thermal spike in desorp-
tionTT) and grain growthTz) induced by bombardment. The correlation of
the ion-induced surface phenomena such as sputtering,T'B) trapping of Oy or
N, on various metals by art bombardment13’14) with thermodynamic parame-~
ters has been also reported. The present results suggest that  the
reformation process which occurs inside the solid after collision cascade

is also controlled by thermodynamic process.
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